Get Dream College with eSaral Gurukul | 40% OFF - Launch Offer | Limited Seats

Half wave rectifier circuit diagram - Definition, Explanation - eSaral

A device that converts alternating current into Direct current is called a rectifier. If you want to learn about the half-wave rectifier and half-wave rectifier circuit diagram then you are at the right place.

Application of diode as a rectifier:

An electronic device that converts alternating current into Direct current is called a rectifier.

Half wave rectifier:

A rectifier, which rectifies only one half of each ac supply cycle is called a half-wave rectifier.
Half wave rectifier circuit diagram

During the first half of the input cycle, the junction diode gets forward bias. The conventional current will flow. The upper end of $R_{L}$ will be positive potential with respect to the lower end during the second half cycle junction diode will get reverse biased and hence no output will be obtained across $R_{L}$.

Input voltage

$\mathrm{V}_{\mathrm{i}}=\mathrm{V}_{\mathrm{m}} \sin \omega \mathrm{t}$

$\mathrm{i}=\mathrm{I}_{\mathrm{m}} \sin \omega \mathrm{t}$

for $0 \leq \omega t \leq \pi$

$\mathrm{i}=0$

for $\pi<\omega t<2 \pi$

$I_{m}=\frac{V_{m}}{R_{f}+R_{L}}$

here $\mathrm{R}_{\mathrm{f}}=$ forward resistance of diode

$R_{L}$ = load resistance

a. dc output current :

$\mathrm{I}_{\mathrm{dc}}=\frac{1}{2 \pi} \int_{0}^{2 \pi} \mathrm{idt}$

$=\frac{1}{2 \pi}\left[\int_{0}^{\pi} \mathrm{I}_{\mathrm{m}} \sin t \mathrm{dt}+\int_{\pi}^{2 \pi} 0 \mathrm{dt}\right]$

$\mathrm{I}_{\mathrm{dc}}=\frac{\mathrm{I}_{\mathrm{m}}}{\pi}=0.318 \mathrm{I}_{\mathrm{m}}$

b. dc output voltage:

$V_{d c}=I_{d c} \times R_{L}$

$=\frac{I_{m}}{\pi} \times R_{L}$

$=\frac{\mathrm{V}_{\mathrm{m}}}{\pi\left[1+\left(\mathrm{R}_{\mathrm{f}} / \mathrm{R}_{\mathrm{L}}\right)\right]}$

$V_{d c}=\frac{V_{m}}{\pi}=0.318 \mathrm{~V}_{\mathrm{m}}$

c. (Root mean square) RMS current:

$I_{r m s}=\left[\frac{1}{2 \pi} \int_{0}^{2 \pi} i^{2} d(t)\right]^{1 / 2}$

$=\frac{I_{m}}{2}$

same

$V_{r m s}=\frac{V_{m}}{2}$

So, that's all from this blog. I hope you enjoyed this explanation of the half-wave rectifier and half-wave rectifier circuit diagram. If you liked this article then please share it with your friends.

Also Read
What is Diode in electronics 

To watch Free Learning Videos on physics by Saransh Gupta sir Install the eSaral App.

Leave a comment

Close

Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now