An object moving in a plane is said to have two-dimensional motion. If you want to learn more about Motion in two dimensions. Then read this article till the end.
Let the position of point P at a time t be given by position
vector $\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{r}}$
$\vec{r}=\hat{i} r \cos \theta+\hat{j} r \sin \theta$
$=\hat{i} x+\hat{j} y$
position Q is given by position vector $\vec{r}_{2}=x_{2} \hat{i}+y_{2} \hat{j}$
from $\Delta \mathrm{OPQ} \Rightarrow \overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{OQ}}$
or $\quad \overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{OQ}}-\overrightarrow{\mathrm{OP}}$
Displacement $\overrightarrow{P Q}=\delta \vec{r}=\vec{r}_{2}-\vec{r}_{1}$
in time interval $\delta \mathrm{t}=\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)$
or
$\vec{\delta}_{r}=\left(x_{2} \hat{i}+y_{2} \hat{j}\right)-\left(x_{1} \hat{i}+y_{1} \hat{j}\right)$
$=\left(x_{2}-x_{1}\right) \hat{i}+\left(y_{2}-y_{1}\right) \hat{j}$
$=\delta \mathrm{x} \hat{\mathrm{i}}+8 \mathrm{y} \hat{\mathrm{j}}$
displacement along X-axis $\delta x=x_{2}-x_{1}$
displacement along Y-axis $\delta y=y_{2}-y_{1}$
Thus, displacement in 2 dimensions is equal to the vector sum of two one dimensional displacements along mutually perpendicular directions.
Let particle move with uniform velocity at $\overrightarrow{\mathrm{V}}$ an angle $\theta$ with X-axis.
Then in component form $\overrightarrow{\mathrm{v}}=\mathrm{v}_{\mathrm{x}} \hat{\mathrm{i}}+\mathrm{v}_{\mathrm{y}} \hat{\mathrm{j}}$
here $v_{x}=v \cos \theta$
and $\quad v_{y}=v \sin \theta$
and $\quad \delta \mathrm{x}=\mathrm{v}_{\mathrm{x}} \delta \mathrm{t}$
$\delta \mathrm{y}=\mathrm{v}_{\mathrm{y}} \delta \mathrm{t}$
or $\delta x=(v \cos \theta) \delta t$
$\delta y=(v \sin \theta) \delta t$
so with $\mathrm{V}_{\mathrm{x}}$ we get displacement along X-axis only and $\mathrm{v}_{\mathrm{y}}$ gives displacement along Y-axis only.
And if particle is moving with uniform acceleration $\overrightarrow{\mathrm{a}}$, then
$\overrightarrow{\mathrm{a}}=\mathrm{a}_{\mathrm{x}} \hat{\mathrm{i}}+\mathrm{a}_{\mathrm{y}} \hat{\mathrm{j}}$
If direction of $\vec{a}$ makes angle $\phi$ with X-axis then $a_{x}=a \cos \phi$ and $\mathrm{a}_{\mathrm{y}}=\mathrm{a} \sin \phi$
are components of $\overrightarrow{\mathrm{a}}$.
Due to $\mathrm{a}_{\mathrm{x}}$, there is a change in the X component of velocity only with no change in Y-component.
Similarly, $\mathrm{a}_{\mathrm{y}}$ will change only the Y component of velocity at time t
So $v_{x}=u_{x}+a_{x} t$
(here $\mathrm{u}_{\mathrm{x}}$ and $\mathrm{u}_{\mathrm{y}}$ are components of initial velocity)
And
$v_{y}=u_{y}+a_{y} t$
Hence
$v_{x} \hat{i}+v_{y} \hat{j}=\left(u_{x}+a_{x} t\right) \hat{i}+\left(u_{y}+a_{y} t\right) \hat{j}$
$=\left(u_{x} \hat{i}+u_{y} \hat{j}\right)+\left(a_{x} \hat{i}+a_{y} \hat{j}\right) t$
Or
$\overrightarrow{\mathrm{v}}=\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{a}} \mathrm{t}$
and similarly, component of displacement are
$s_{x}=u_{x} t+\frac{1}{2} a_{x} t^{2}$
And
$s_{y}=u_{y} t+\frac{1}{2} a_{y} t^{2}$
Hence
$s_{x} \hat{i}+s_{y} \hat{j}=\left(u_{x} \hat{i}+u_{y} \hat{j}\right)+\frac{1}{2}\left(a_{x} \hat{i}+a_{y} \hat{j}\right) t^{2}$
Or
$\vec{s}=\vec{u} t+\frac{1}{2} \vec{a} t^{2}$
So, that's all from this blog. I hope you get the idea about motion in two dimensions. If you liked this explanation then don't forget to share this article with your friends.
Also read
Newtons Laws of Motion
To watch Free Learning Videos on physics by Saransh Gupta sir Install the eSaral App.
Motion in Two Dimensions
An object moving in a plane is said to have two-dimensional motion. The two-dimensional motion is equal to the vector sum of two one-dimensional motions along a mutually perpendicular direction.
Let the position of point P at a time t be given by position
vector $\overrightarrow{\mathrm{OP}}=\overrightarrow{\mathrm{r}}$
$\vec{r}=\hat{i} r \cos \theta+\hat{j} r \sin \theta$
$=\hat{i} x+\hat{j} y$
Displacement
Let the position of point P at time $\mathrm{t}_{1}$ be described by position vector $\vec{r}_{1}=x_{1} \hat{i}+y_{1} \hat{j}$ and at time $\mathrm{t}_{2}$position Q is given by position vector $\vec{r}_{2}=x_{2} \hat{i}+y_{2} \hat{j}$

from $\Delta \mathrm{OPQ} \Rightarrow \overrightarrow{\mathrm{OP}}+\overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{OQ}}$
or $\quad \overrightarrow{\mathrm{PQ}}=\overrightarrow{\mathrm{OQ}}-\overrightarrow{\mathrm{OP}}$
Displacement $\overrightarrow{P Q}=\delta \vec{r}=\vec{r}_{2}-\vec{r}_{1}$
in time interval $\delta \mathrm{t}=\left(\mathrm{t}_{2}-\mathrm{t}_{1}\right)$
or
$\vec{\delta}_{r}=\left(x_{2} \hat{i}+y_{2} \hat{j}\right)-\left(x_{1} \hat{i}+y_{1} \hat{j}\right)$
$=\left(x_{2}-x_{1}\right) \hat{i}+\left(y_{2}-y_{1}\right) \hat{j}$
$=\delta \mathrm{x} \hat{\mathrm{i}}+8 \mathrm{y} \hat{\mathrm{j}}$
displacement along X-axis $\delta x=x_{2}-x_{1}$
displacement along Y-axis $\delta y=y_{2}-y_{1}$
Thus, displacement in 2 dimensions is equal to the vector sum of two one dimensional displacements along mutually perpendicular directions.
Let particle move with uniform velocity at $\overrightarrow{\mathrm{V}}$ an angle $\theta$ with X-axis.
Then in component form $\overrightarrow{\mathrm{v}}=\mathrm{v}_{\mathrm{x}} \hat{\mathrm{i}}+\mathrm{v}_{\mathrm{y}} \hat{\mathrm{j}}$
here $v_{x}=v \cos \theta$
and $\quad v_{y}=v \sin \theta$
and $\quad \delta \mathrm{x}=\mathrm{v}_{\mathrm{x}} \delta \mathrm{t}$
$\delta \mathrm{y}=\mathrm{v}_{\mathrm{y}} \delta \mathrm{t}$
or $\delta x=(v \cos \theta) \delta t$
$\delta y=(v \sin \theta) \delta t$
so with $\mathrm{V}_{\mathrm{x}}$ we get displacement along X-axis only and $\mathrm{v}_{\mathrm{y}}$ gives displacement along Y-axis only.
And if particle is moving with uniform acceleration $\overrightarrow{\mathrm{a}}$, then
$\overrightarrow{\mathrm{a}}=\mathrm{a}_{\mathrm{x}} \hat{\mathrm{i}}+\mathrm{a}_{\mathrm{y}} \hat{\mathrm{j}}$
If direction of $\vec{a}$ makes angle $\phi$ with X-axis then $a_{x}=a \cos \phi$ and $\mathrm{a}_{\mathrm{y}}=\mathrm{a} \sin \phi$
are components of $\overrightarrow{\mathrm{a}}$.
Due to $\mathrm{a}_{\mathrm{x}}$, there is a change in the X component of velocity only with no change in Y-component.
Similarly, $\mathrm{a}_{\mathrm{y}}$ will change only the Y component of velocity at time t
So $v_{x}=u_{x}+a_{x} t$
(here $\mathrm{u}_{\mathrm{x}}$ and $\mathrm{u}_{\mathrm{y}}$ are components of initial velocity)
And
$v_{y}=u_{y}+a_{y} t$
Hence
$v_{x} \hat{i}+v_{y} \hat{j}=\left(u_{x}+a_{x} t\right) \hat{i}+\left(u_{y}+a_{y} t\right) \hat{j}$
$=\left(u_{x} \hat{i}+u_{y} \hat{j}\right)+\left(a_{x} \hat{i}+a_{y} \hat{j}\right) t$
Or
$\overrightarrow{\mathrm{v}}=\overrightarrow{\mathrm{u}}+\overrightarrow{\mathrm{a}} \mathrm{t}$
and similarly, component of displacement are
$s_{x}=u_{x} t+\frac{1}{2} a_{x} t^{2}$
And
$s_{y}=u_{y} t+\frac{1}{2} a_{y} t^{2}$
Hence
$s_{x} \hat{i}+s_{y} \hat{j}=\left(u_{x} \hat{i}+u_{y} \hat{j}\right)+\frac{1}{2}\left(a_{x} \hat{i}+a_{y} \hat{j}\right) t^{2}$
Or
$\vec{s}=\vec{u} t+\frac{1}{2} \vec{a} t^{2}$
So, that's all from this blog. I hope you get the idea about motion in two dimensions. If you liked this explanation then don't forget to share this article with your friends.
Also read
Newtons Laws of Motion
To watch Free Learning Videos on physics by Saransh Gupta sir Install the eSaral App.
- JEE Main
- Exam Pattern
- Previous Year Papers
- PYQ Chapterwise
- Physics
- Kinematics 1D
- Kinemetics 2D
- Friction
- Work, Power, Energy
- Centre of Mass and Collision
- Rotational Dynamics
- Gravitation
- Calorimetry
- Elasticity
- Thermal Expansion
- Heat Transfer
- Kinetic Theory of Gases
- Thermodynamics
- Simple Harmonic Motion
- Wave on String
- Sound waves
- Fluid Mechanics
- Electrostatics
- Current Electricity
- Capacitor
- Magnetism and Matter
- Electromagnetic Induction
- Atomic Structure
- Dual Nature of Matter
- Nuclear Physics
- Radioactivity
- Semiconductors
- Communication System
- Error in Measurement & instruments
- Alternating Current
- Electromagnetic Waves
- Wave Optics
- X-Rays
- All Subjects
- Physics
- Motion in a Plane
- Law of Motion
- Work, Energy and Power
- Systems of Particles and Rotational Motion
- Gravitation
- Mechanical Properties of Solids
- Mechanical Properties of Fluids
- Thermal Properties of matter
- Thermodynamics
- Kinetic Theory
- Oscillations
- Waves
- Electric Charge and Fields
- Electrostatic Potential and Capacitance
- Current Electricity
- Thermoelectric Effects of Electric Current
- Heating Effects of Electric Current
- Moving Charges and Magnetism
- Magnetism and Matter
- Electromagnetic Induction
- Alternating Current
- Electromagnetic Wave
- Ray Optics and Optical Instruments
- Wave Optics
- Dual Nature of Radiation and Matter
- Atoms
- Nuclei
- Semiconductor Electronics: Materials, Devices and Simple Circuits.
- Chemical Effects of Electric Current,
All Study Material
- JEE Main
- Exam Pattern
- Previous Year Papers
- PYQ Chapterwise
- Physics
- Kinematics 1D
- Kinemetics 2D
- Friction
- Work, Power, Energy
- Centre of Mass and Collision
- Rotational Dynamics
- Gravitation
- Calorimetry
- Elasticity
- Thermal Expansion
- Heat Transfer
- Kinetic Theory of Gases
- Thermodynamics
- Simple Harmonic Motion
- Wave on String
- Sound waves
- Fluid Mechanics
- Electrostatics
- Current Electricity
- Capacitor
- Magnetism and Matter
- Electromagnetic Induction
- Atomic Structure
- Dual Nature of Matter
- Nuclear Physics
- Radioactivity
- Semiconductors
- Communication System
- Error in Measurement & instruments
- Alternating Current
- Electromagnetic Waves
- Wave Optics
- X-Rays
- All Subjects
- Physics
- Motion in a Plane
- Law of Motion
- Work, Energy and Power
- Systems of Particles and Rotational Motion
- Gravitation
- Mechanical Properties of Solids
- Mechanical Properties of Fluids
- Thermal Properties of matter
- Thermodynamics
- Kinetic Theory
- Oscillations
- Waves
- Electric Charge and Fields
- Electrostatic Potential and Capacitance
- Current Electricity
- Thermoelectric Effects of Electric Current
- Heating Effects of Electric Current
- Moving Charges and Magnetism
- Magnetism and Matter
- Electromagnetic Induction
- Alternating Current
- Electromagnetic Wave
- Ray Optics and Optical Instruments
- Wave Optics
- Dual Nature of Radiation and Matter
- Atoms
- Nuclei
- Semiconductor Electronics: Materials, Devices and Simple Circuits.
- Chemical Effects of Electric Current,
Free Study Material