Question.
A capsule of medicine is in the shape of a sphere of diameter $3.5 \mathrm{~mm}$. How much medicine (in $\mathrm{mm}^{3}$ ) is needed to fill this capsule? $\left[\right.$ Assume $\left.\pi=\frac{22}{7}\right]$
A capsule of medicine is in the shape of a sphere of diameter $3.5 \mathrm{~mm}$. How much medicine (in $\mathrm{mm}^{3}$ ) is needed to fill this capsule? $\left[\right.$ Assume $\left.\pi=\frac{22}{7}\right]$
Solution:
Radius $(r)$ of capsule $=\left(\frac{3.5}{2}\right) \mathrm{mm}=1.75 \mathrm{~mm}$
Volume of spherical capsule $=\frac{4}{3} \pi r^{3}$
$=\left[\frac{4}{3} \times \frac{22}{7} \times(1.75)^{3}\right] \mathrm{mm}^{3}$
$=22.458 \mathrm{~mm}^{3}$
$=22.46 \mathrm{~mm}^{3}$ (approximately)
Therefore, the volume of the spherical capsule is $22.46 \mathrm{~mm}^{3}$.
Radius $(r)$ of capsule $=\left(\frac{3.5}{2}\right) \mathrm{mm}=1.75 \mathrm{~mm}$
Volume of spherical capsule $=\frac{4}{3} \pi r^{3}$
$=\left[\frac{4}{3} \times \frac{22}{7} \times(1.75)^{3}\right] \mathrm{mm}^{3}$
$=22.458 \mathrm{~mm}^{3}$
$=22.46 \mathrm{~mm}^{3}$ (approximately)
Therefore, the volume of the spherical capsule is $22.46 \mathrm{~mm}^{3}$.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.