Evaluate

Question:

Evaluate

(i) $(-12)^{3}+7^{3}+5^{3}$

(ii) $(28)^{3}+(-15)^{3}+(-13)^{3}$

 

Solution:

(i) $(-12)^{3}+7^{3}+5^{3}$

We know

$x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$

$x^{3}+y^{3}+z^{3}=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)+3 x y z$

Here, $x=(-12), y=7, z=5$

$(-12)^{3}+7^{3}+5^{3}$

$=(-12+7+5)\left[(-12)^{2}+7^{2}+5^{2}-7(-12)-35+60\right]+3(-12) \times 35$

$=0-1260=-1260$

(ii) $(28)^{3}+(-15)^{3}+(-13)^{3}$

We know

$x^{3}+y^{3}+z^{3}-3 x y z=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)$

$x^{3}+y^{3}+z^{3}=(x+y+z)\left(x^{2}+y^{2}+z^{2}-x y-y z-z x\right)+3 x y z$

Here, $x=(-28), y=-15, z=-13$

$(28)^{3}+(-15)^{3}+(-13)^{3}$

$=(28-15-13)\left[(28)^{2}+(-15)^{2}+(-13)^{2}-28(-15)-(-15)(-13)-28(-13)\right]+3$

$\times 28(-15)(-13)$

$=0+16380=16380$

 

Leave a comment