Evaluate each of the following
$\cot ^{2} 30^{\circ}-2 \cos ^{2} 60^{\circ}-\frac{3}{4} \sec ^{2} 45^{\circ}-4 \sec ^{2} 30^{\circ}$
We have,
$\cot ^{2} 30^{\circ}-2 \cos ^{2} 60^{\circ}-\frac{3}{4} \sec ^{2} 45^{\circ}-4 \sec ^{2} 30^{\circ}$ …… (1)
Now,
$\cot 30^{\circ}=\sqrt{3}, \cos 60^{\circ}=\frac{1}{2}, \sec 45^{\circ}=\sqrt{2}, \sec 30^{\circ}=\frac{2}{\sqrt{3}}$
So by substituting above values in equation (1)
We get,
$\cot ^{2} 30^{\circ}-2 \cos ^{2} 60^{\circ}-\frac{3}{4} \sec ^{2} 45^{-}-4 \sec ^{2} 30^{\circ}$
$=(\sqrt{3})^{2}-2\left(\frac{1}{2}\right)^{2}-\frac{3}{4}(\sqrt{2})^{2}-4\left(\frac{2}{\sqrt{3}}\right)^{2}$
$=3-2 \times \frac{1^{2}}{2^{2}}-\frac{3}{4} \times 2-4 \times \frac{2^{2}}{(\sqrt{3})^{2}}$
Now, in the third term 4 gets cancelled by 2 and 2 remains
Therefore,
$\cot ^{2} 30^{\circ}-2 \cos ^{2} 60^{\circ}-\frac{3}{4} \sec ^{2} 45^{\circ}-4 \sec ^{2} 30^{\circ}$
$=3-2 \times \frac{1}{4}-\frac{3}{2}-4 \times \frac{4}{3}$
Now in the second term, 4 gets cancelled by 2 and 2 remains
Therefore,
$\cot ^{2} 30^{\circ}-2 \cos ^{2} 60^{\circ}-\frac{3}{4} \sec ^{2} 45^{\circ}-4 \sec ^{2} 30^{\circ}$
$=3-\frac{1}{2}-\frac{3}{2}-4 \times \frac{4}{3}$
$=3-\frac{1}{2}-\frac{3}{2}-\frac{16}{3}$
Now, LCM of denominator in the above expression is 6
Therefore by taking LCM
We get,
$\cot ^{2} 30^{\circ}-2 \cos ^{2} 60^{\circ}-\frac{3}{4} \sec ^{2} 45^{\circ}-4 \sec ^{2} 30^{\circ}$
$=\frac{3 \times 6}{1 \times 6}-\frac{1 \times 3}{2 \times 3}-\frac{3 \times 3}{2 \times 3}-\frac{16 \times 2}{3 \times 2}$
$=\frac{18}{6}-\frac{3}{6}-\frac{9}{6}-\frac{32}{6}$
$=\frac{18-3-9-32}{6}$
$=\frac{18-12-32}{6}$
$=\frac{18-44}{6}$
$=\frac{-26}{6}$
Now in the above expression, $\frac{-26}{6}$ gets reduced to $\frac{-13}{3}$
Therefore,
$\cot ^{2} 30^{-}-2 \cos ^{2} 60^{-}-\frac{3}{4} \sec ^{2} 45-4 \sec ^{2} 30^{\circ}=\frac{-13}{3}$