Evaluate each of the following
$\tan ^{2} 30^{\circ}+\tan ^{2} 60^{\circ}+\tan ^{2} 45^{\circ}$
We have to find the following expression
$\tan ^{2} 30^{\circ}+\tan ^{2} 60^{\circ}+\tan ^{2} 45 \ldots \ldots(1)$
Now,
$\tan 30^{\circ}=\frac{1}{\sqrt{3}}, \tan 60^{\circ}=\sqrt{3}, \tan 45^{\circ}=1$
So by substituting above values in equation (1)
We get,
$\tan ^{2} 30^{\circ}+\tan ^{2} 60^{\circ}+\tan ^{2} 45$
$=\left(\frac{1}{\sqrt{3}}\right)^{2}+(\sqrt{3})^{2}+(1)^{2}$
$=\frac{1^{2}}{(\sqrt{3})^{2}}+(\sqrt{3})^{2}+1$
$=\frac{1}{3}+3+1$
$=\frac{1}{3}+4$
Now by taking LCM
We get,
$\tan ^{2} 30^{\circ}+\tan ^{2} 60^{\circ}+\tan ^{2} 45$
$=\frac{1}{3}+\frac{4 \times 3}{1 \times 3}$
$=\frac{1}{3}+\frac{12}{3}$
$=\frac{1+12}{3}$
$=\frac{13}{3}$
Therefore,
$\tan ^{2} 30^{\circ}+\tan ^{2} 60^{\circ}+\tan ^{2} 45^{\circ}=\frac{13}{3}$