Evaluate the following integral:
$\int \frac{2 x+1}{(x+1)(x-2)} d x$
Here the denominator is already factored.
So let
$\frac{2 x+1}{(x+1)(x-2)}=\frac{A}{x+1}+\frac{B}{x-2} \ldots \ldots$ (i)
$\Rightarrow \frac{2 x+1}{(x+1)(x-2)}=\frac{A(x-2)+B(x+1)}{(x+1)(x-2)}$
$\Rightarrow 2 x+1=A(x-2)+B(x+1) \ldots \ldots($ ii $)$
We need to solve for $A$ and $B$. One way to do this is to pick values for $x$ which will cancel each variable.
Put $x=2$ in the above equation, we get
$\Rightarrow 2(2)+1=A(2-2)+B(2+1)$
$\Rightarrow 3 B=5$
$\Rightarrow \mathrm{B}=\frac{5}{3}$
Now put $x=-1$ in equation (ii), we get
$\Rightarrow 2(-1)+1=A((-1)-2)+B((-1)+1)$
$\Rightarrow-3 A=-1$
$\Rightarrow A=\frac{1}{3}$
We put the values of $A$ and $B$ values back into our partial fractions in equation (i) and replace this as the integrand. We get
$\int\left[\frac{\mathrm{A}}{\mathrm{x}+1}+\frac{\mathrm{B}}{\mathrm{x}-2}\right] \mathrm{dx}$
$\Rightarrow \int\left[\frac{\frac{1}{3}}{x+1}+\frac{\frac{5}{3}}{x-2}\right] d x$
Split up the integral,
$\Rightarrow \frac{1}{3} \int\left[\frac{1}{x+1}\right] d x+\frac{5}{3} \int\left[\frac{1}{x-2}\right] d x$
Let substitute $u=x+1 \Rightarrow d u=d x$ and $z=x-2 \Rightarrow d z=d x$, so the above equation becomes,
$\Rightarrow \frac{1}{3} \int\left[\frac{1}{\mathrm{u}}\right] \mathrm{du}+\frac{5}{3} \int\left[\frac{1}{\mathrm{z}}\right] \mathrm{dz}$
On integrating we get
$\Rightarrow \frac{1}{3} \log |\mathrm{u}|+\frac{5}{3} \log |\mathrm{z}|+\mathrm{C}$
Substituting back, we get
$\Rightarrow \frac{1}{3} \log |x+1|+\frac{5}{3} \log |x-2|+C$
Note: the absolute value signs account for the domain of the natural $\log$ function $(x>0)$.
Hence,
$\int \frac{2 x+1}{(x+1)(x-2)} d x=\frac{1}{3} \log |x+1|+\frac{5}{3} \log |x-2|+C$