Express each of the following product as a monomials and verify the result in each case for x = 1:
(5x4) × (x2)3 × (2x)2
We have to find the product of the expression in order to express it as a monomial.
To multiply algebraic expressions, we use commutative and associative laws along with the laws of indices, i.e., $a^{m} \times a^{n}=a^{m+n}$ and $\left(a^{m}\right)^{n}=a^{m n}$
We have:
$\left(5 x^{4}\right) \times\left(x^{2}\right)^{3} \times(2 x)^{2}$
$=\left(5 x^{4}\right) \times\left(x^{6}\right) \times\left(2^{2} \times x^{2}\right)$
$=\left(5 \times 2^{2}\right) \times\left(x^{4} \times x^{6} \times x^{2}\right)$
$=\left(5 \times 2^{2}\right) \times\left(x^{4+6+2}\right)$
$=20 x^{12}$
$\therefore\left(5 x^{4}\right) \times\left(x^{2}\right)^{3} \times(2 x)^{2}=20 x^{12}$
Substituting x = 1 in LHS, we get:
$\mathrm{LHS}=\left(5 x^{4}\right) \times\left(x^{2}\right)^{3} \times(2 x)^{2}$
$=\left(5 \times 1^{4}\right) \times\left(1^{2}\right)^{3} \times(2 \times 1)^{2}$
$=(5 \times 1) \times\left(1^{6}\right) \times(2)^{2}$
$=5 \times 1 \times 4$
$=20$
Put x =1 in RHS, we get:
RHS $=20 x^{12}$
$=20 \times(1)^{12}$
$=20 \times 1$
$=20$
$\because L H S=R H S$ for $x=1$; therefore, the result is correct.
Thus, the answer is $20 x^{12}$.