Question:
Factorize:
$x^{6}-729$
Solution:
$x^{6}-729=\left(x^{2}\right)^{3}-(9)^{3}$
$=\left[x^{2}-9\right]\left[\left(x^{2}\right)^{2}+x^{2} \times 9+9^{2}\right]$
$=\left[x^{2}-3^{2}\right]\left(x^{4}+9 x^{2}+81\right)$
$=(x+3)(x-3)\left(x^{4}+18 x^{2}+81-9 x^{2}\right)$
$=(x+3)(x-3)\left[\left(x^{2}\right)^{2}+2 \times x^{2} \times 9+9^{2}-9 x^{2}\right]$
$=(x+3)(x-3)\left[\left(x^{2}+9\right)^{2}-(3 x)^{2}\right]$
$=(x+3)(x-3)\left(x^{2}+9+3 x\right)\left(x^{2}+9-3 x\right)$
$=(x+3)(x-3)\left(x^{2}+3 x+9\right)\left(x^{2}-3 x+9\right)$