Question:
Find the direction cosines of the vector $\hat{i}+2 \hat{j}+3 \hat{k}$
Solution:
Let $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}$
$\therefore|\vec{a}|=\sqrt{1^{2}+2^{2}+3^{2}}=\sqrt{1+4+9}=\sqrt{14}$
Hence, the direction cosines of $\vec{a}$ are $\left(\frac{1}{\sqrt{14}}, \frac{2}{\sqrt{14}}, \frac{3}{\sqrt{14}}\right)$.