Question:
Find the following product and verify the result for x = − 1, y = − 2:
(3x − 5y) (x + y)
Solution:
To multiply, we will use distributive law as follows:
(3x − 5y) (x + y)
$=3 x(x+y)-5 y(x+y)$
$=3 x^{2}+3 x y-5 x y-5 y^{2}$
$=3 x^{2}-2 x y-5 y^{2}$
$\therefore(3 x-5 y)(x+y)=3 x^{2}-2 x y-5 y^{2}$
Now, we put $x=-1$ and $y=-2$ on both sides to verify the result.
LHS $=(3 x-5 y)(x+y)$
$=\{3(-1)-5(-2)\}\{-1+(-2)\}$
$=(-3+10)(-3)$
$=(7)(-3)$
$=-21$
$\mathrm{RHS}=3 x^{2}-2 x y-5 y^{2}$
$=3(-1)^{2}-2(-1)(-2)-5(-2)^{2}$
$=3 \times 1-4-5 \times 4$
$=3-4-20$
$=-21$
Because LHS is equal to RHS, the result is verified.
Thus, the answer is $3 x^{2}-2 x y-5 y^{2}$.