For $x>0$, if $f(x)=\int_{i}^{x} \frac{\log _{e} t}{(1+t)} d t$, then $f(e)+f\left(\frac{1}{e}\right)$ is equal to
Correct Option: , 3
$f(x)=\int_{i}^{x} \frac{\log _{e} t}{(1+t)} d t$
$f\left(\frac{1}{x}\right)=\int_{1}^{1 / x} \frac{\ell \mathrm{nt}}{1+t} \mathrm{dt}$, let $\mathrm{t}=\frac{1}{\mathrm{y}}$
$=+\int_{1}^{x} \frac{\ell \text { ny }}{1+y} \cdot \frac{y}{y^{2}} d y$
$=\int_{1}^{x} \frac{\ell n y}{y(1+y)} d y$
hence
$f(\mathrm{x})+f\left(\frac{1}{\mathrm{x}}\right)=\int_{1}^{\mathrm{x}} \frac{(1+\mathrm{t}) \ell \mathrm{nt}}{\mathrm{t}(1+\mathrm{t})} \mathrm{dt}=\int_{1}^{\mathrm{x}} \frac{\ell \mathrm{nt}}{\mathrm{t}} \mathrm{dt}$
$=\frac{1}{2} \ell \mathrm{n}^{2}(\mathrm{x})$
so $f(\mathrm{e})+f\left(\frac{1}{\mathrm{e}}\right)=\frac{1}{2}$
..(3)
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.