If $\frac{\pi}{2}
If $\frac{\pi}{2}
$\sqrt{\frac{1+\sin x}{1-\sin x}}+\sqrt{\frac{1-\sin x}{1+\sin x}}=k \sec x \quad$ (given)
L.H. $\mathrm{S}=\sqrt{\frac{1+\sin x}{1-\sin x}}+\sqrt{\frac{1-\sin x}{1+\sin x}}$
$=\sqrt{\frac{1+\sin x}{1-\sin x} \times \frac{1+\sin x}{1+\sin x}}+\sqrt{\frac{1-\sin x}{1+\sin x} \times \frac{1-\sin x}{1-\sin x}}$
$=\sqrt{\left[\frac{(1+\sin x)^{2}}{1-\sin ^{2} x}\right]}+\sqrt{\frac{(1-\sin x)^{2}}{1-\sin ^{2} x}}$
$=\sqrt{\frac{(1+\sin x)^{2}}{\cos ^{2} x}}+\sqrt{\frac{(1-\sin x)^{2}}{\cos ^{2} x}}$
$=\frac{1+\sin x}{\sqrt{\cos ^{2} x}}+\frac{(1-\sin x)}{\sqrt{\cos ^{2} x}}$
$=\frac{2}{\sqrt{\cos ^{2} x}}$
Since $\frac{\pi}{2}
$=\frac{2}{-\cos x}=-2 \sec x=\mathrm{R} . \mathrm{H} . \mathrm{S} \quad$ (given)
$=k \sec x$
$\Rightarrow$ Value of $k=-2$