If $5 \theta$ and $4 \theta$ are acute angles satisfying $\sin 5 \theta=\cos 4 \theta$, then $2 \sin 3 \theta-\sqrt{3} \tan 3 \theta$ is equal to
(a) 1
(b) 0
(c) $-1$
(d) $1+\sqrt{3}$
We are given that $5 \theta$ and $4 \theta$ are acute angles satisfying the following condition
$\sin 5 \theta=\cos 4 \theta$. We are asked to find $2 \sin 3 \theta-\sqrt{3} \tan 3 \theta$
$\Rightarrow \sin 5 \theta=\cos 4 \theta$
$\Rightarrow \cos \left(90^{\circ}-5 \theta\right)=\cos 4 \theta$
$\Rightarrow 90^{\circ}-5 \theta=4 \theta$
$\Rightarrow 9 \theta=90^{\circ}$
Where $5 \theta$ and $4 \theta$ are acute angles
$\Rightarrow \theta=10^{\circ}$
Now we have to find:
$2 \sin 3 \theta-\sqrt{3} \tan 3 \theta$
$=2 \sin 30^{\circ}-\sqrt{3} \tan 30^{\circ}$
$=2 \times \frac{1}{2}-\sqrt{3} \times \frac{1}{\sqrt{3}}$
$=1-1$
$=0$
Hence the correct option is (b)