if

Question:

If $\frac{3+i \sin \theta}{4-i \cos \theta}, \theta \in[0,2 \pi]$, is $a$ real number, then an argument of $\sin \theta+i \cos \theta$ is:

  1. (1) $\pi-\tan ^{-1}\left(\frac{4}{3}\right)$

  2. (2) $\pi-\tan ^{-1}\left(\frac{3}{4}\right)$

  3. (3) $-\tan ^{-1}\left(\frac{3}{4}\right)$

  4. (4) $\tan ^{-1}\left(\frac{4}{3}\right)$


Correct Option: , 2

Solution:

Let $z=\frac{3+i \sin \theta}{4-i \cos \theta}$, after rationallsing

$z=\frac{(3+i \sin \theta)}{(4-i \cos \theta)} \times \frac{(4+i \cos \theta)}{(4+i \cos \theta)}$

As $z$ is purely real

$\Rightarrow 3 \cos \theta+4 \sin \theta=0 \Rightarrow \tan \theta=-\frac{3}{4}$

$\arg (\sin \theta+i \cos \theta)=\pi+\tan ^{-1}\left(\frac{\cos \theta}{\sin \theta}\right)$

$=\pi+\tan ^{-1}\left(-\frac{4}{3}\right)=\pi-\tan ^{-1}\left(\frac{4}{3}\right)$

Leave a comment