If A = 60° and B = 30°, verify that:
(i) sin (A + B) = sin A cos B + cos A sin B
(ii) cos (A + B) = cos A cos B − sin A sin B
A = 60o and B = 30o
Now, A + B = 60o + 30o = 90o
Also, A − B = 60o − 30o = 30o
(i) sin (A + B) = sin 90o = 1
sin A cos B + cos A sin B = sin 60o cos 30o + cos 60o sin 30o
$=\left(\frac{\sqrt{3}}{2} \times \frac{\sqrt{3}}{2}+\frac{1}{2} \times \frac{1}{2}\right)=\left(\frac{3}{4}+\frac{1}{4}\right)=1$
∴ sin (A + B) = sin A cos B + cos A sin B
(ii) cos (A + B) = cos 90o = 0
$\cos A \cos B-\sin A \sin B=\cos 60^{\circ} \cos 30^{\circ}-\sin 60^{\circ} \sin 30^{\circ}=\left(\frac{1}{2} \times \frac{\sqrt{3}}{2}-\frac{\sqrt{3}}{2} \times \frac{1}{2}\right)=\left(\frac{\sqrt{3}}{4}-\frac{\sqrt{3}}{4}\right)=0$
$\therefore \cos (A+B)=\cos A \cos B-\sin A \sin B$