If a, b, c are in AP, show that
(i) $(b+c-a),(c+a-b),(a+b-c)$ are in AP.
(ii) $\left(b c-a^{2}\right),\left(c a-b^{2}\right),\left(a b-c^{2}\right)$ are in AP.
(i) $(b+c-a),(c+a-b),(a+b-c)$ are in AP.
To prove: $(b+c-a),(c+a-b),(a+b-c)$ are in AP.
Given: a, b, c are in A.P.
Proof: Let d be the common difference for the A.P. a,b,c
Since a, b, c are in A.P
$\Rightarrow b-a=c-b=$ common difference
$\Rightarrow a-b=b-c=d$
$\Rightarrow 2(a-b)=2(b-c)=2 d \ldots$ (i)
Considering series $(b+c-a),(c+a-b),(a+b-c)$
For numbers to be in A.P. there must be a common difference between them
Taking (b + c – a) and (c + a – b)
Common Difference $=(c+a-b)-(b+c-a)$
$=c+a-b-b-c+a$
$=2 a-2 b$
$=2(a-b)$
$=2 \mathrm{~d}[$ from eqn. (i) $]$
Taking (c + a – b) and (a + b – c)
Common Difference $=(a+b-c)-(c+a-b)$
$=a+b-c-c-a+b$
$=2 b-2 c$
$=2(b-c)$
$=2 d$ [from eqn. (i)]
Here we can see that we have obtained a common difference between numbers i.e. 2d
Hence, $(b+c-a),(c+a-b),(a+b-c)$ are in AP.
(ii) $\left(b c-a^{2}\right),\left(c a-b^{2}\right),\left(a b-c^{2}\right)$ are in AP.
To prove: $\left(b c-a^{2}\right),\left(c a-b^{2}\right),\left(a b-c^{2}\right)$ are in AP.
Given: $a, b, c$ are in A.P.
Proof: Let d be the common difference for the A.P. a,b,c
Since a, b, c are in A.P.
$\Rightarrow b-a=c-b=$ common difference
$\Rightarrow a-b=b-c=d \ldots$ (i)
Considering series $\left(b c-a^{2}\right),\left(c a-b^{2}\right),\left(a b-c^{2}\right)$
For numbers to be in A.P. there must be a common difference between them
Taking $\left(b c-a^{2}\right)$ and $\left(c a-b^{2}\right)$
Common Difference $=\left(c a-b^{2}\right)-\left(b c-a^{2}\right)$
$=\left[c a-b^{2}-b c+a^{2}\right]$
$=\left[c a-b c+a^{2}-b^{2}\right]$
$=[c(a-b)+(a+b)(a-b)]$
$=[(a-b)(a+b+c)]$
$a-b=d$, from eqn. (i)
$\Rightarrow[(d)(a+b+c)]$
Taking $\left(c a-b^{2}\right)$ and $\left(a b-c^{2}\right)$
Common Difference $=\left(a b-c^{2}\right)-\left(c a-b^{2}\right)$
$=\left[a b-c^{2}-c a+b^{2}\right]$
$=\left[a b-c a+b^{2}-c^{2}\right]$
$=[a(b-c)+(b-c)(b+c)]$
$=[(b-c)(a+b+c)]$
$b-c=d$, from eqn. (i)
$\Rightarrow[(d)(a+b+c)]$
Here we can see that we have obtained a common difference between numbers
i.e. [(d) $(a+b+c)$ ]
Hence, $\left(b c-a^{2}\right),\left(c a-b^{2}\right),\left(a b-c^{2}\right)$ are in AP.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.