If A is a square matrix of order 3 such that

Question:

If $A$ is a square matrix of order 3 such that $|A|=\frac{5}{2}$, then $\left|A^{-1}\right|=$___________

Solution:

Given:

$A$ is a square matrix of order 3

$|A|=\frac{5}{2}$

As we know,

$\left|A^{-1}\right|=|A|^{-1}$

$\Rightarrow\left|A^{-1}\right|=\frac{1}{|A|}$

$\Rightarrow\left|A^{-1}\right|=\frac{1}{\frac{5}{2}}$

$\Rightarrow\left|A^{-1}\right|=\frac{2}{5}$

Hence, $\left|A^{-1}\right|=\underline{\frac{2}{5}}$.

Leave a comment