If $A$ is an invertible matrix of order 3 and $|A|=5$, then $\operatorname{adj}(\operatorname{adj} A)=$___________
Given:
$A$ is an invertible matrix of order 3
$|A|=5$
As we know,
$\operatorname{adj}(\operatorname{adj} A)=|A|^{n-2} A$, where $n$ is the order of $A$
$\Rightarrow \operatorname{adj}(\operatorname{adj} A)=|A|^{3-2} A \quad(\because$ Order of $A$ is 3$)$
$\Rightarrow \operatorname{adj}(\operatorname{adj} A)=|A|^{1} A$
$\Rightarrow \operatorname{adj}(\operatorname{adj} A)=5 A \quad(\because|A|=5)$
$\Rightarrow \operatorname{adj}(\operatorname{adj} A)=5 A$
Hence, $\operatorname{adj}(\operatorname{adj} A)=\underline{5 A} .$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.