If cos x = k has exactly one solution in [0, 2π], then write the values(s) of k.
Given: $\cos x=k$
If $k=0$, then
$\cos x=0$
$\Rightarrow \cos x=\cos \frac{\pi}{2}$
$\Rightarrow x=(2 n+1) \frac{\pi}{2}, n \in Z$
Now, $x=\frac{3 \pi}{2}, \frac{5 \pi}{2}, \frac{7 \pi}{2}, \ldots$ for $n=1,2,3, \ldots$
If $k=1$, then
$\cos x=1$
$\Rightarrow \cos x=\cos 0$
$\Rightarrow x=2 m \pi, \mathrm{m} \in \mathrm{Z}$
Now, $x=2 \pi, 4 \pi, 6 \pi, 8 \pi, \ldots$ for $m=1,2,3,4, \ldots$
If $k=-1$, then
$\cos x=-1$
$\Rightarrow \cos x=\cos \pi$
$\Rightarrow x=2 \mathrm{p} \pi \pm \pi, \mathrm{p} \in \mathrm{Z}$
Now,
$x=2 p \pi+\pi$, i. e., $x=3 \pi, 5 \pi, 7 \pi, \ldots$ when $p=1,2,3, \ldots$
And,
$x=2 p \pi-\pi$, i. e., $x=\pi, 3 \pi, 5 \pi, 7 \pi, \ldots$ when $p=1,2,3,4, \ldots$
Clearly, we can see that for $x=\pi, \cos x=k$ has exactly one solution.
$\therefore k=-1$