If cosec θ − cot θ = α, write the value of cosec θ + cot α.

Question:

If $\operatorname{cosec} \theta-\cot \theta=\alpha$, write the value of $\operatorname{cosec} \theta+\cot \alpha$

Solution:

Given: $\operatorname{cosec} \theta-\cot \theta=\alpha$

We know that, $\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1$

Therefore,

$\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1$

$\Rightarrow(\operatorname{cosec} \theta+\cot \theta)(\operatorname{cosec} \theta-\cot \theta)=1$

$\Rightarrow(\operatorname{cosec} \theta+\cot \theta) \alpha=1$

$\Rightarrow(\operatorname{cosec} \theta+\cot \theta)=\frac{1}{\alpha}$

Hence, $\operatorname{cosec} \theta+\cot \theta=\frac{1}{\alpha}$

Leave a comment