Question:
If $\sin \theta=\frac{1}{\sqrt{2}}$, find all other trigonometric ratios of angle $\theta$
Solution:
Given: $\sin \theta=\frac{1}{\sqrt{2}}$
We have to find all the trigonometric ratios.
We have the following right angle triangle.
Base $=\sqrt{\text { Hypotenuse }^{2}-\text { Perpendicular }^{2}}$
$\Rightarrow B C=\sqrt{A C^{2}-A B^{2}}$
$\Rightarrow B C=\sqrt{(\sqrt{2})^{2}-1^{2}}$
$\Rightarrow B C=1$
$\cos \theta=\frac{B C}{A C}=\frac{1}{\sqrt{2}}$
$\operatorname{cosec} \theta=\frac{A C}{A B}=\frac{\sqrt{2}}{1}=\sqrt{2}$
$\sec \theta=\frac{A C}{B C}=\frac{\sqrt{2}}{1}=\sqrt{2}$
$\tan \theta=\frac{A B}{B C}=\frac{1}{1}=1$
$\cot \theta=\frac{B C}{A B}=\frac{1}{1}=1$