If $\tan \theta=\frac{1}{\sqrt{2}}$, find the value of $\frac{\operatorname{cosec}^{2} \theta-\sec ^{2} \theta}{\operatorname{cosec}^{2} \theta+\cot ^{2} \theta}$.
Given: $\tan \theta=\frac{1}{\sqrt{2}}$
We have to find the value of the expression $\frac{\operatorname{cosec}^{2} \theta-\sec ^{2} \theta}{\operatorname{cosec}^{2} \theta+\cot ^{2} \theta}$
We know that,
$1+\cot ^{2} \theta=\operatorname{cosec}^{2} \theta$
$\Rightarrow \operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1$
Therefore, the given expression can be written as
$\frac{\operatorname{cosec}^{2} \theta-\sec ^{2} \theta}{\operatorname{cosec}^{2} \theta+\cot ^{2} \theta}=\frac{\operatorname{cosec}^{2} \theta-\sec ^{2} \theta}{1+\cot ^{2} \theta+\cot ^{2} \theta}$
$=\frac{\operatorname{cosec}^{2} \theta-\sec ^{2} \theta}{1+2 \cot ^{2} \theta}$
$\tan \theta=\frac{1}{\sqrt{2}} \Rightarrow \cot \theta=\sqrt{2}$
$\frac{\operatorname{cosec}^{2} \theta-\sec ^{2} \theta}{1+2 \cot ^{2} \theta}=\frac{1+\cot ^{2} \theta-\left(1+\tan ^{2} \theta\right)}{1+2 \cot ^{2} \theta} \quad\left(\right.$ since $\left.\sec ^{2} \theta=1+\tan ^{2} \theta\right)$
$=\frac{\cot ^{2} \theta-\tan ^{2} \theta}{1+2 \cot ^{2} \theta}$
$=\frac{(\sqrt{2})^{2}-\left(\frac{1}{\sqrt{2}}\right)^{2}}{1+2 \times(\sqrt{2})^{2}}$
$=\frac{3}{10}$
Hence, the value of the given expression is $\frac{3}{10}$.