If tanx = b/a then find the value ofÂ
$\sqrt{\frac{a+b}{a-b}}+\sqrt{\frac{a-b}{a+b}}$
According to the question,
tan x = b/a
Let,
$y=\sqrt{\frac{a+b}{a-b}}+\sqrt{\frac{a-b}{a+b}}$
$\therefore y=\sqrt{\frac{a\left(1+\frac{b}{a}\right)}{a\left(1-\frac{b}{a}\right)}}+\sqrt{\frac{a\left(1-\frac{b}{a}\right)}{a\left(1+\frac{b}{a}\right)}}$
$=\sqrt{\frac{(1+\tan x)}{(1-\tan x)}}+\sqrt{\frac{(1-\tan x)}{(1+\tan x)}}$
$=\frac{\sqrt{1+\tan x}}{\sqrt{1-\tan x}}+\frac{\sqrt{1-\tan x}}{\sqrt{1+\tan x}}$
$=\frac{(\sqrt{1+\tan x})^{2}+(\sqrt{1-\tan x})^{2}}{(\sqrt{1-\tan x})(\sqrt{1+\tan x})}$
$=\frac{1+\tan x+1-\tan x}{\sqrt{1-\tan ^{2} x}}=\frac{2}{\sqrt{1-\tan ^{2} x}}$
$\therefore y=\sqrt{\frac{a+b}{a-b}}+\sqrt{\frac{a-b}{a+b}}=\frac{2}{\sqrt{1-\tan ^{2} x}}$
$=\frac{2}{\sqrt{1-\frac{\sin ^{2} \theta}{\cos ^{2} \theta}}}$
$=\frac{2}{\frac{\sqrt{\cos ^{2} \theta-\sin ^{2} \theta}}{\cos \theta}}$
$\because \cos ^{2} \theta-\sin ^{2} \theta=\cos 2 \theta$
$=\frac{2 \cos \theta}{\sqrt{\cos 2 \theta}}$