Question:
If the centroid of ∆ABC, which has vertices A(a, b), B(b, c) and C(c, a), is the origin, find the value of (a + b + c).
Solution:
The given points are A(a, b), B(b, c) and C(c, a).
Here,
$\left(x_{1}=a, y_{1}=b\right), \quad\left(x_{2}=b, y_{2}=c\right)$ and $\left(x_{3}=c, y_{3}=a\right)$
Let the centroid be (x, y).
Then,
$x=\frac{1}{3}\left(x_{1}+x_{2}+x_{3}\right)$
$=\frac{1}{3}(a+b+c)$
$=\frac{a+b+c}{3}$
$y=\frac{1}{3}\left(y_{1}+y_{2}+y_{3}\right)$
$=\frac{1}{3}(b+c+a)$
$=\frac{a+b+c}{3}$
But it is given that the centroid of the triangle is the origin.
Then, we have:
$\frac{a+b+c}{3}=0$
$\Rightarrow a+b+c=0$