If the equilibrium constant for $\mathrm{A} \rightleftharpoons \mathrm{B}+\mathrm{C}$ is
$\mathrm{K}_{\mathrm{eq}}^{(1)}$ and that of $\mathrm{B}+\mathrm{C} \rightleftharpoons \mathrm{P}$ is $\mathrm{K}_{\mathrm{eq}}^{(2)}$, the
equilibrium constant for $\mathrm{A} \rightleftharpoons \mathrm{P}$ is :-
Correct Option: , 2
$\mathrm{A} \rightleftharpoons \mathrm{B}+\mathrm{C} \quad \mathrm{K}_{e q}^{(1)}=\frac{[\mathrm{B}][\mathrm{C}]}{[\mathrm{A}]}$$\ldots . .(1)$
$\mathrm{B}+\mathrm{C} \rightleftharpoons \mathrm{P} \quad \mathrm{K}_{\text {eq }}^{(2)}=\frac{[\mathrm{P}]}{[\mathrm{B}][\mathrm{C}]}$$\ldots . .(2)$
For
$\mathrm{A} \rightleftharpoons \mathrm{P} \quad \mathrm{K}_{\mathrm{eq}}=\frac{[\mathrm{P}]}{[\mathrm{A}]}$
Multiplying equation (1) & (2)
$\mathrm{K}_{\text {eq }}^{(1)} \times \mathrm{K}_{\text {eq }}^{(2)}=\frac{[\mathrm{P}]}{[\mathrm{A}]}=\mathrm{K}_{\text {eq }}$