If the magnetic moment of a dioxygen species is

Question:

If the magnetic moment of a dioxygen species is $1.73 \mathrm{~B} . \mathrm{M}$, it may be:

  1. $\mathrm{O}_{2}^{-}$or $\mathrm{O}_{2}^{+}$

  2. $\mathrm{O}_{2}$ or $\mathrm{O}_{2}^{+}$

  3. $\mathrm{O}_{2}$ or $\mathrm{O}_{2}^{-}$

  4. $\mathrm{O}_{2}, \mathrm{O}_{2}^{-}$or $\mathrm{O}_{2}^{+}$


Correct Option: 1

Solution:

$\mu=\sqrt{n(n+2)}$ B.M.

$1.73=\sqrt{n(n+2)}$

$n=1$

$\mathrm{O}_{2}^{+}=\sigma 1 s^{2} \sigma^{*} 1 s^{2} \sigma 2 s^{2} \sigma^{*} 2 s^{2} \sigma 2 p_{z}^{2} \pi 2 p_{x}^{2}$

$=\pi 2 p_{y}^{2} \pi^{*} 2 p_{x}^{1}=\pi^{*} 2 p_{y}^{\circ}$

$\mathrm{O}_{2}^{-}=\sigma 1 s^{2} \sigma^{*} 1 s^{2} \sigma 2 s^{2} \sigma^{*} 2 s^{2} \sigma 2 p_{z}^{2} \pi 2 p_{x}^{2}$

$=\pi 2 p_{y}^{2} \pi^{*} 2 p_{x}^{2}=\pi^{*} 2 p_{y}^{1}$

Leave a comment