Question:
If (z – 1)/(z + 1) is a purely imaginary number (z ≠ –1), then find the value of |z|.
Solution:
According to the question,
Let z = x + iy
Now,
$\frac{z-1}{z+1}=\frac{x+i y-1}{x+i y+1}$
$=\frac{[(x-1)+i y][(x+1)-i y]}{[(x+1)+i y][(x+1)-i y]}$
$=\frac{\left(x^{2}-1\right)+y^{2}+i[(x+1) y-(x-1) y]}{(x+1)^{2}+y^{2}}$
According to the question, we have,
$\frac{z-1}{z+1}$ is purely imaginary.
$\Rightarrow \frac{\left(x^{2}-1\right)+y^{2}}{(x+1)^{2}+y^{2}}=0$
⇒ x2 – 1 + y2 = 0
⇒ x2 + y2 = 1
⇒ √(x2 + y2) = 1
Hence, |z| = 1