In the given figure, given that ∆ABC ∼ ∆PQR and quad ABCD ∼ quad PQRS. Determine the value of x, y, z in each case.
In the given figure, given that ∆ABC ∼ ∆PQR and quad ABCD ∼ quad PQRS. Determine the value of x, y, z in each case.
(i) We have, $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$
So the ratio of the sides of the triangles will be proportional to each other.
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{AC}}{\mathrm{PR}}$
Therefore put the values of the known terms in the above equation to get,
$\frac{12}{9}=\frac{7}{x}=\frac{10}{y}$
On solving these simultaneous equations, we get
$x=\frac{21}{4}$
$y=\frac{30}{4}$
(ii) We have, $\square \mathrm{ABCD} \sim \mathrm{PQRS}$
So the ratio of the sides of the quadrilaterals will be proportional to each other.
$\frac{\mathrm{AB}}{\mathrm{PQ}}=\frac{\mathrm{BC}}{\mathrm{QR}}=\frac{\mathrm{CD}}{\mathrm{RS}}=\frac{\mathrm{DA}}{\mathrm{SP}}$
Therefore put the values of the known terms in the above equation to get,
$\frac{20}{7}=\frac{16}{x}=\frac{50}{y}=\frac{50}{3 z}$
On solving these simultaneous equations, we get
$x=\frac{28}{5}$
$y=\frac{35}{2}$
$z=\frac{35}{6}$