In the given figure, two concentric circles with centre O have radii 21 cm and 42 cm. If ∠AOB = 60°, find the area of the shaded region. $\left[\right.$ Use $\left.\pi=\frac{22}{7}\right]$
Given: Radius of the inner circle with radius OC, r = 21 cm
Radius of the inner circle with radius OA, R = 42 cm
∠AOB = 60°
Area of the circular ring
$=\pi R^{2}-\pi r^{2}$
$=\pi\left[R^{2}-r^{2}\right]$
$=\pi\left[42^{2}-21^{2}\right] \mathrm{cm}^{2}$
Area of ACDB = area of sector AOB − area of COD
$=\frac{60}{360} \times \pi \times R^{2}-\frac{60}{360} \times \pi \times r^{2}$
$=\frac{60}{360} \times \pi\left[R^{2}-r^{2}\right]$
$=\frac{60}{360} \times \pi\left[42^{2}-21^{2}\right]$
Area of shaded region = area of circular ring − area of ACDB
$=\pi\left[42^{2}-21^{2}\right]-\frac{60}{360} \pi\left[42^{2}-21^{2}\right]$
$=\pi\left[42^{2}-21^{2}\right]\left[1-\frac{60}{360}\right]$
$=\frac{22}{7}(42-21)(42+21) \times \frac{300}{360}$
$=3465 \mathrm{~cm}^{2}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.