Deepak Scored 45->99%ile with Bounce Back Crack Course. You can do it too!

Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that:

Question:

Let A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}. Verify that:

(i) A × C ⊂ B × D

(ii) A × (B ∩ C) = (A × B) ∩ (A × C)

Solution:

Given:

A = {1, 2}, B = {1, 2, 3, 4}, C = {5, 6} and D = {5, 6, 7, 8}

(i) A × C ⊂ B × D

LHS: A × C = {(1, 5), (1, 6), (2, 5), (2, 6)}

RHS: B × D = {(1, 5), (1, 6), (1, 7), (1, 8), (2, 5), (2, 6), (2, 7), (2, 8), (3, 5), (3, 6), (3, 7), (3, 8), (4, 5), (4, 6), (4, 7), (4, 8)}

∴ A × C ⊂ B × D

(ii) A × (B ∩ C) = (A × B) ∩ (A × C)

We have:

$(B \cap C)=\phi$

LHS: $A \times(B \cap C)=\phi$

Now,

(A × B) = {(1, 1), (1, 2), (1, 3), (1, 4), (2, 1), (2, 2), (2, 3), (2, 4)}

(A × C) = {(1, 5), (1, 6), (2, 5), (2, 6)}

RHS: (A × B) ∩ (A × C) = ϕ

∴ LHS = RHS

Leave a comment

None
Free Study Material