Let f(x) be a quadratic polynomial such that

Question:

Let $f(x)$ be a quadratic polynomial such that $\mathrm{f}(-1)+\mathrm{f}(2)=0$. If one of the roots of $\mathrm{f}(\mathrm{x})=0$ is 3 , then its other root lies in :

  1. $(-3,-1)$

  2. $(1,3)$

  3. $(-1,0)$

  4. $(0,1)$


Correct Option: , 3

Solution:

$f(x)=a(x-3)(x-\alpha)$

$f(2)=a(\alpha-2)$

$f(-1)=4 a(1+\alpha)$

$f(-1)+f(2)=0 \Rightarrow a(\alpha-2+4+4 \alpha)=0$

$a \neq 0 \Rightarrow 5 \alpha=-2$

$\alpha=-\frac{2}{5}=-0.4$

$\alpha \in(-1,0)$

Leave a comment