Let $mathrm{f}$ be a twice differentiable function on

Question:

Let $\mathrm{f}$ be a twice differentiable function on $(1,6)$. If $f(2)=8, f^{\prime}(2)=5, f^{\prime}(x) \geq 1$ and $f^{\prime \prime}(x) \geq 4$, for all $x \in(1,6)$, then :

  1. $f(5) \leq 10$

  2. $\mathrm{f}^{\prime}(5)+\mathrm{f}^{\prime \prime}(5) \leq 20$

  3. $\mathrm{f}(5)+\mathrm{f}^{\prime}(5) \geq 28$

  4. $f(5)+f^{\prime}(5) \leq 26$


Correct Option: , 3

Solution:

$f(2)=8, f^{\prime}(2)=5, f^{\prime}(x) \geq 1, f^{\prime \prime}(x) \geq 4, \forall x \in(1,6)$

$f^{\prime \prime}(x)=\frac{f^{\prime}(5)-f^{\prime}(2)}{5-2} \geq 4 \Rightarrow f^{\prime}(5) \geq 17$ ..........(1)

$f^{\prime}(x)=\frac{f(5)-f(2)}{5-2} \geq 1 \Rightarrow f(5) \geq 11$ .............(2)

$\overline{f^{\prime}(5)+f(5) \geq 28}$

 

Leave a comment