Mark the correct alternative in each of the following:
The distance between the points (cos θ, 0) and (sin θ − cos θ) is
(a) $\sqrt{3}$
(b) $\sqrt{2}$
(c) 2
(d) 1
We have to find the distance between $\mathrm{A}(\cos \theta, \sin \theta)$ and $\mathrm{B}(\sin \theta,-\cos \theta)$.
In general, the distance between $\mathrm{A}\left(x_{1}, y_{1}\right)$ and $\mathrm{B}\left(x_{2}, y_{2}\right)$ is given by,
$\mathrm{AB}=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}$
So,
$\mathrm{AB}=\sqrt{(\sin \theta-\cos \theta)^{2}+(-\cos \theta-\sin \theta)^{2}}$
$=\sqrt{2\left(\sin ^{2} \theta+\cos ^{2} \theta\right)}$
But according to the trigonometric identity,
$\sin ^{2} \theta+\cos ^{2} \theta=1$
Therefore,
$\mathrm{AB}=\sqrt{2}$
So, the answer is (b)