Question:
The lines $r=(\hat{i}-\hat{j})+l(2 \hat{i}+k)$ and $\vec{r}=(2 \hat{i}-\hat{j})+m(\hat{i}+\hat{j}-\hat{k})$
Correct Option: 1
Solution:
$L_{1} \equiv \vec{r}=(\hat{i}-\hat{j})+\ell(2 \hat{i}+k)$
$L_{2} \equiv \vec{r}=(2 \hat{i}-\hat{j})+m(\hat{i}+\hat{j}-\hat{k})$
Equating coeff. of $\hat{i}, \hat{j}$ and $\hat{k}$ of $L_{1}$ and $L_{2}$
$2 \ell+1=m+2$ ...(i)
$-1=-1+m \Rightarrow m=0$
$\ell=-m$ ...(iii)
$\Rightarrow m=\ell=0$ which is not satisfy eqn. (i) hence lines do not intersect for any value of $\ell$ and $m$.