Question:
Let $\mathrm{y}=\mathrm{y}(\mathrm{x})$ be the solution of the differential equation $\sin \mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{y} \cos \mathrm{x}=4 \mathrm{x}, \mathrm{x} \in(0$,
$\pi)$. If $\mathrm{y}\left(\frac{\pi}{2}\right)=0$, then $\mathrm{y}\left(\frac{\pi}{6}\right)$ is equal to :
Correct Option: , 2
Solution: