Prove the following

Question:

Let $\mathrm{y}=\mathrm{y}(\mathrm{x})$ be the solution of the differential equation $\sin \mathrm{x} \frac{\mathrm{dy}}{\mathrm{dx}}+\mathrm{y} \cos \mathrm{x}=4 \mathrm{x}, \mathrm{x} \in(0$,

$\pi)$. If $\mathrm{y}\left(\frac{\pi}{2}\right)=0$, then $\mathrm{y}\left(\frac{\pi}{6}\right)$ is equal to :

  1. $\frac{-8}{9 \sqrt{3}} \pi^{2}$

  2. $-\frac{8}{9} \pi^{2}$

  3. $-\frac{4}{9} \pi^{2}$

  4. $\frac{4}{9 \sqrt{3}} \pi^{2}$


Correct Option: , 2

Solution:

Leave a comment