Prove the following

Question:

If $a=2+\sqrt{3}$, then find the value of $\left(a-\frac{1}{a}\right)$.

Solution:

We have, $a=2+\sqrt{3}$

Then,        $\frac{1}{a}=\frac{1}{2+\sqrt{3}} \times \frac{2-\sqrt{3}}{2-\sqrt{3}}$          [multiplying numerator and denominator by $(2-\sqrt{3})$ ]

$=\frac{2-\sqrt{3}}{(2)^{2}-(\sqrt{3})^{2}}=\frac{2-\sqrt{3}}{4-3}=2-\sqrt{3}$            [using identity, $(a+b)(a-b)=a^{2}-b^{2}$ ]

$\Rightarrow \quad \frac{1}{a}=2-\sqrt{3}$

$\therefore \quad a-\frac{1}{a}=(2+\sqrt{3})-(2-\sqrt{3})=2+\sqrt{3}-2+\sqrt{3}=2 \sqrt{3}$

Leave a comment