Question:
Prove the following trigonometric identities.
$\frac{\cos \theta}{1-\sin \theta}=\frac{1+\sin \theta}{\cos \theta}$
Solution:
We know that, $\sin ^{2} \theta+\cos ^{2} \theta=1$
Multiplying both numerator and the denominator by $(1+\sin \theta)$, we have
$\frac{\cos \theta}{1-\sin \theta}=\frac{\cos \theta(1+\sin \theta)}{(1-\sin \theta)(1+\sin \theta)}$
$=\frac{\cos \theta(1+\sin \theta)}{\left(1-\sin ^{2} \theta\right)}$
$=\frac{\cos \theta(1+\sin \theta)}{\cos ^{2} \theta}$
$=\frac{1+\sin \theta}{\cos \theta}$