Question:
Prove the following trigonometric identities.
$\frac{1+\sec \theta}{\sec \theta}=\frac{\sin ^{2} \theta}{1-\cos \theta}$
Solution:
We have to prove $\frac{1+\sec \theta}{\sec \theta}=\frac{\sin ^{2} \theta}{1-\cos \theta}$
We know that, $\sin ^{2} \theta+\cos ^{2} \theta=1$
$\frac{1+\sec \theta}{\sec \theta}=\frac{1+\frac{1}{\cos \theta}}{\frac{1}{\cos \theta}}$
$=\frac{\frac{\cos \theta+1}{\cos \theta}}{\frac{1}{\cos \theta}}$
$=\frac{1+\cos \theta}{1}$
Multiplying the numerator and denominator by $(1-\cos \theta)$, we have
$\frac{1+\sec \theta}{\sec \theta}=\frac{(1+\cos \theta)(1-\cos \theta)}{(1-\cos \theta)}$
$=\frac{1-\cos ^{2} \theta}{1-\cos \theta}$
$=\frac{\sin ^{2} \theta}{1-\cos \theta}$