Question:
Prove the following trigonometric identities.
$\left(\sec ^{2} \theta-1\right)\left(\operatorname{cosec}^{2} \theta-1\right)=1$
Solution:
We know that,
$\sec ^{2} \theta-\tan ^{2} \theta=1$
$\operatorname{cosec}^{2} \theta-\cot ^{2} \theta=1$
So,
$\left(\sec ^{2} \theta-1\right)\left(\operatorname{cosec}^{2} \theta-1\right)=\tan ^{2} \theta \times \cot ^{2} \theta$
$=(\tan \theta \times \cot \theta)^{2}$
$=\left(\tan \theta \times \frac{1}{\tan \theta}\right)^{2}$
$=(1)^{2}$
$=1$