Prove the following trigonometric identities.
$\frac{\left(1+\tan ^{2} \theta\right) \cot \theta}{\operatorname{cosec}^{2} \theta}=\tan \theta$
We need to prove $\frac{\left(1+\tan ^{2} \theta\right) \cot \theta}{\operatorname{cosec}^{2} \theta}=\tan \theta$
Solving the L.H.S, we get
$\frac{\left(1+\tan ^{2} \theta\right) \cot \theta}{\operatorname{cosec}^{2} \theta}=\frac{\sec ^{2} \theta(\cot \theta)}{\operatorname{cosec}^{2} \theta}$
Using $\sec \theta=\frac{1}{\cos \theta}, \cot \theta=\frac{\cos \theta}{\sin \theta}$ and $\operatorname{cosec} \theta=\frac{1}{\sin \theta}$, we get
$\frac{\sec ^{2} \theta(\cot \theta)}{\operatorname{cosec}^{2} \theta}=\frac{\frac{1}{\cos ^{2} \theta}\left(\frac{\cos \theta}{\sin \theta}\right)}{\frac{1}{\sin ^{2} \theta}}$
$=\frac{\frac{1}{\cos \theta \sin \theta}}{\frac{1}{\sin ^{2} \theta}}$
$=\frac{\sin ^{2} \theta}{\cos \theta \sin \theta}$
$=\frac{\sin \theta}{\cos \theta}$
$=\tan \theta$
Hence proved.
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.