Question:
Prove the following trigonometric identities.
$\frac{\cos \theta}{1+\sin \theta}=\frac{1-\sin \theta}{\cos \theta}$
Solution:
We know that, $\sin ^{2} \theta+\cos ^{2} \theta=1$
Multiplying the both numerator and the denominator by $(1-\sin \theta)$, we have
$\frac{\cos \theta}{1+\sin \theta}=\frac{\cos \theta(1-\sin \theta)}{(1+\sin \theta)(1-\sin \theta)}$
$=\frac{\cos \theta(1-\sin \theta)}{\left(1-\sin ^{2} \theta\right)}$
$=\frac{\cos \theta(1-\sin \theta)}{\cos ^{2} \theta}$
$=\frac{1-\sin \theta}{\cos \theta}$