Question:
$\sqrt{x^{2}+3 x}$
Solution:
Let $I=\int \sqrt{x^{2}+3 x} d x$
$=\int \sqrt{x^{2}+3 x+\frac{9}{4}-\frac{9}{4}} d x$
$=\int \sqrt{\left(x+\frac{3}{2}\right)^{2}-\left(\frac{3}{2}\right)^{2}} d x$
It is known that, $\int \sqrt{x^{2}-a^{2}} d x=\frac{x}{2} \sqrt{x^{2}-a^{2}}-\frac{a^{2}}{2} \log \left|x+\sqrt{x^{2}-a^{2}}\right|+\mathrm{C}$
$\begin{aligned} \therefore I &=\frac{\left(x+\frac{3}{2}\right)}{2} \sqrt{x^{2}+3 x}-\frac{9}{2} \log \left|\left(x+\frac{3}{2}\right)+\sqrt{x^{2}+3 x}\right|+C \\ &=\frac{(2 x+3)}{4} \sqrt{x^{2}+3 x}-\frac{9}{8} \log \left(x+\frac{3}{2}\right)+\sqrt{x^{2}+3 x}+C \end{aligned}$
Click here to get exam-ready with eSaral
For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.