Solve the following

Question:

If $S_{n}=\sum_{r=1}^{n} \frac{1+2+2^{2}+\ldots \text { Sum to } r \text { terms }}{2^{r}}$, then $S_{n}$ is equal to

(a) $2^{n}-n-1$

(b) $1-\frac{1}{2^{n}}$

(c) $n-1+\frac{1}{2^{n}}$

(d) $2^{n}-1$

Solution:

(c) $n-1+\frac{1}{2^{n}}$

We have:

$S_{n}=\sum_{r=1}^{n} \frac{1+2+2^{2}+\ldots \text { sum to } r \text { terms }}{2^{r}}$

$\Rightarrow S_{n}=\sum_{r=1}^{n} \frac{1\left(2^{r}-1\right)}{2^{r}}$

$\Rightarrow S_{n}=\sum_{r=1}^{n}\left(1-\frac{1}{2^{r}}\right)$

$\Rightarrow S_{n}=n-\sum_{r=1}^{n}\left(\frac{1}{2^{r}}\right)$

$\Rightarrow S_{n}=n-\left[\frac{\left(\frac{1}{2}\right)\left\{1-\left(\frac{1}{2}\right)^{n}\right\}}{1-\frac{1}{2}}\right]$

$\Rightarrow S_{n}=n-\left[1-\left(\frac{1}{2}\right)^{n}\right]$

$\Rightarrow S_{n}=n-1+\frac{1}{2^{n}}$

 

 

Leave a comment