Solve the following


If the equations $x^{2}+x+a=0$ and $x^{2}+a x+1=0, a \neq 1$, have a common root, then $a=$ ____________________



$x^{2}+x+a=0$ and

$x^{2}+a x+1=0$ have a common root where $a \neq 1$.

Solving above 2 equations, we get


i. e. $x(1-a)=+1-a$

i. e. $x=1$ $(\because a \neq 1)$ given

$\therefore a$ can be obtained form $x^{2}+x+a=0$

Since $x=1$ satisfy $x^{2}+x+a=0$

i. e. $(1)^{2}+1+a=0$

i. e. $a=-2$


Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now