Solve the following

Question:

If the equations $x^{2}+x+a=0$ and $x^{2}+a x+1=0, a \neq 1$, have a common root, then $a=$ ____________________

Solution:

Given:

$x^{2}+x+a=0$ and

$x^{2}+a x+1=0$ have a common root where $a \neq 1$.

Solving above 2 equations, we get

$x(1-a)+a-1=0$

i. e. $x(1-a)=+1-a$

i. e. $x=1$ $(\because a \neq 1)$ given

$\therefore a$ can be obtained form $x^{2}+x+a=0$

Since $x=1$ satisfy $x^{2}+x+a=0$

i. e. $(1)^{2}+1+a=0$

i. e. $a=-2$

 

Leave a comment