Solve the following

Question:

If $n \in \mathbb{N}$, then find the value of $i^{n}+i^{n+1}+i^{n+2}+i^{n+3}$.

Solution:

$i^{n}+i^{n+1}+i^{n+2}+i^{n+3}$

$=i^{n}+i^{n} \cdot i+i^{n} \cdot i^{2}+i^{n} \cdot i^{3}$

$=i^{n}+i^{n} \cdot i+i^{n} \cdot(-1)+i^{n} \cdot(-i)$

$=i^{n}+i^{n} \cdot i-i^{n}-i^{n} \cdot i$

$=0$

Thus, the value of $i^{n}+i^{n+1}+i^{n+2}+i^{n+3}$ is 0 .

Leave a comment