Question:
Find, when:
If $y=x \sin y$, prove that $\left(x \cdot \frac{d y}{d x}\right)=\frac{y}{(1-x \cos y)}$
There is correction in question .... Prove that should be $\frac{d y}{d x}=\frac{\sin y}{1-x \cos y}$ instead of
$\left(\mathrm{x} \cdot \frac{\mathrm{dy}}{\mathrm{dx}}\right)=\frac{\mathrm{y}}{(1-\mathrm{x} \cos \mathrm{y})}$ to get the required answer.
Solution: