Solve this following


Let $f: \mathrm{R} \rightarrow \mathrm{R}$ be such that for all

$x \in R\left(2^{1+x}+2^{1-x}\right), f(x)$ and $\left(3^{x}+3^{-x}\right)$ are in A.P., then the minimum value of $f(x)$ is


  1. 0

  2. 3

  3. 2

  4. 4

Correct Option: , 2


$f(x)=\frac{2\left(2^{x}+2^{-x}\right)+\left(3^{x}+3^{-x}\right)}{2} \geq 3$

(A.M $\geq$ G.M)


Leave a comment


Click here to get exam-ready with eSaral

For making your preparation journey smoother of JEE, NEET and Class 8 to 10, grab our app now.

Download Now