Solve this following Question

Question:

If $\mathrm{L}_{\mathrm{l}}$ is the line of intersection of the planes $2 \mathrm{x}-2 \mathrm{y}+3 \mathrm{z}-2=0, \mathrm{x}-\mathrm{y}+\mathrm{z}+1=0$ and $\mathrm{L}_{2}$ is the line of intersection of the planes $\mathrm{x}+2 \mathrm{y}-\mathrm{z}-3=0,3 \mathrm{x}-\mathrm{y}+2 \mathrm{z}-1=0$, then the distance of the origin from the plane, containing the lines $L_{1}$ and $L_{2}$ is $z$

  1. $\frac{1}{3 \sqrt{2}}$

  2. $\frac{1}{2 \sqrt{2}}$

  3. $\frac{1}{\sqrt{2}}$

  4. $\frac{1}{4 \sqrt{2}}$


Correct Option: 1

Solution:

Leave a comment