Question:
The base of a right-angled triangle measures 48 cm and its hypotenuse measures 50 cm. Find the area of the triangle.
Solution:
Let $\triangle P Q R$ be a right-angled triangle and $P Q \perp Q R$.
Now,
$P Q=\sqrt{P R^{2}-Q R^{2}}$
$=\sqrt{50^{2}-48^{2}}$
$=\sqrt{2500-2304}$
$=\sqrt{196}$
$=14 \mathrm{~cm}$
Area of triangle $=\frac{1}{2} \times Q R \times P Q$
$=\frac{1}{2} \times 48 \times 14$
$=336 \mathrm{~cm}^{2}$